
Computational Synthesis of Mechanical Systems

Sridhar Kota
Professor of Mechanical Engineering

University of Michigan, Ann Arbor, MI 48105-2125
Email: kota@umich.edu

Abstract
The paper provides a brief outline of methods for
automated synthesis of mechanical systems in general,
with primary focus on application domains involving
kinematics of mechanical motions. Two application
domains described in this paper, mechanisms and machine
tool design, employ methods of selecting and assembling
appropriate building blocks to satisfy given functional
(motion) specifications. This is called Synthesis by
Composition. The functionality of the precompiled
building blocks as well as the design task specifications are
captured mathematically in a unified representation
scheme. Generation of alternate designs is accomplished
by manipulation of matrices representing functions. The
paper also presents another method of Synthesis by
Elimination to automatically generate topologies of
flexible structures which satisfy given input/output forces
and displacements. The methodology presented in this
paper has been successfully applied to computational
synthesis of mechanisms, machine tools, compliant
mechanisms, and differentials. Various applications of
these methods to automotive, aerospace, and medical and
MEMS fields will be presented at the symposium.

1.0 Introduction
A systematic procedure for automated synthesis involves
(a) proper understanding of task requirements and (b)
creation of a concept design; which is referred as
configuration design, or type synthesis (mechanisms), or
topology synthesis (structures, machine tools) etc.
depending on the application domain. This early phase of
design is still a mixture of art and science. In order to
develop a more scientific basis for conceptual design
process, we need a unified mathematical framework that
captures both the design intent (task requirements) as well
as the functionality of the basic building blocks of the
application domain. Such a mathematical framework,
being limited to a specific application domain, can
systematically, and therefore computationally, generate
alternate solutions and rank them according to various
performance requirements and constraints. The same
framework can also include information relevant to further
analysis and evaluation.

Whenever we attempt to develop a systematic procedure,
let alone an algorithmic one, to “automate” an open-ended
creative design process, we need to focus on certain

aspects of the problem first and set aside the others until
later stages [Kota and Lee 1993]. Assuming we start with a
“complete” set of design requirements we can sort out the
desired primary functions, and performance requirements
or operational constraints . A function describes the
intended behavior of the artifact to be designed. For
instance, in a mechanism, the primary function is purely
kinematic; that is say when the input motor is turned on,
the output should follow a specified path. Inertia forces
due to component masses and the speed of operation affect
the dynamic behavior, motor size, vibrations, etc.
Focusing on the essentials, we first develop alternate
functional (kinematic) solutions to convert the motion of a
rotating shaft into a desired trajectory. We can then
evaluate each of the alternatives and rank them in terms of
their superiority in dynamic performance measures.

The basic premise of this work, like many others reported
in the literature, is that we begin the synthesis process by
reasoning with functions before addressing the
performance requirements and constraints keeping in mind
that a complete solution must satisfy all the constraints as
well as the functions before it is deemed useful. Alternate
designs are generated first by considering functions alone.
This functional synthesis process yields alternate
configurations, or topologies, or arrangements which
satisfy the design requirements in a qualitative sense.
Systematic generation of these conceptual alternatives can
be performed in at least two ways: (a) Synthesis by
Composition; in which each of the higher level functions
are mapped to one of more pre-compiled physical building
blocks that are stored in the library. We must then keep
track of the order and spatial orientations of the candidate
building blocks to create a meaningful assembly. This
generic method of synthesizing building blocks is similar
to creative reasoning of a human designer. (b) Synthesis by
Elimination, on the other hand, is something that is very
peculiar to comp uters. Here we start with much lower level
building blocks of the same kind (Lego blocks, or beams,
or tubes etc.) with a plurality of standardized connections
among them. If the design intent is captured correctly, an
optimization algorithm automatically eliminates the
building blocks that are not needed leaving a feasible
topology. Building blocks used in this type of synthesis
procedure have finer granularity than the ones used in
synthesis by composition. In order for this approach to
work without combinatorial explosion, all the building

From: AAAI Technical Report SS-03-02. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved.

blocks should share the same functional character (all
beams – resist bending; or all tubes – resist torsion; or
Lego blocks of certain geometric shapes).

In the following, we will very briefly describe the two
approaches to synthesis. Many of the important details and
illustrations and the related work by other researchers are
omitted due to space constraints. Interested readers should
refer to articles cited for detailed and complete
descriptions.

2.0 Computational Synthesis of Mechanisms

Conceptual design of mechanisms is still a mixture of art
of science. Many researchers in the past have attempted to
classify basic elements of mechanisms in order to
systematize the creative design process [Reuleaux 1876,
Molian 1969, Chironis 1978, Artobolevski 1986]. A
detailed account of various approaches to creative design
of mechanisms can be found in [Chiou and Kota and
Chiou 1992]. Graph enumeration procedures reported in
the literature [Freudenstein and Maki 1979, Tsai 2000] are
based primarily on structural and topological
considerations and do not reflect the desired behavior;
where desired behavior is characterized as a set of
kinematic functions and operational constraints that
capture the intended motion requirements.

Starting with the intended function and operational
constraints, the methodology presented by [Chiou and
Kota 1999] systematically generates alternate mechanism
concepts. The methodology uses symbolic matrices and
constraint vectors to represent the functionality of
mechanism building blocks. When no direct match exists
between the motion requirements and stored building
blocks, the matrix representation scheme automatically
decomposes the given task into sub tasks to facilitate
search of sub-solutions and performs subsequent synthesis.
Rather than symbolic matrices, motion transformation
matrices based on dual vector algebra [Ball 1900, Bottema
and Roth 1979, Murray et al 1993] was later presented by
[Moon and Kota 2002].

The dual-vector representation of a rigid-body motion
(screw representation) enables us to separate the function
from the structure. The design synthesis process comprises
of three stages: 1. Functional synthesis. (2) Topological
synthesis and (3) Dimensional synthesis. Motion codes
capture the kinematic motion transformation required to
accomplish the task as well as kinematic functionality of
stored building blocks. The necessary coordinate
transformation and alignments required to assemble
appropriate building blocks are performed using dual
vector algebra during topological synthesis.
Decomposition of a desired task into subtasks, in order to
meet either kinematic function or spatial constraints, is

performed by manipulating the dual-vector
representations.

2.1 Motion Specifications
The dual representation of a screw can also be directly
applied to represent desired motion specifications. Suppose
we intend to design (or select or assemble) a mechanism
that transforms a rotational input motion into a
translational output motion (figure 1), then the motion
requirements can be represented as:

()[]III LRLS ×++= εεθ 0ˆ
II

()[]IOOF LRLS ×++= εθε)(0ˆ
IO

Where the pitch 0I εθ + represents the rotational motion,

pitch)(0 IθεF+ represents the translational motion. The

dual vectors represent the directions (LI and LO) and the
positions (RI and RO). Therefore the desired kinematic
function of the mechanism is to transform 0I εθ +

to)(0 IθεF+ . Further, the spatial orientation of the input

and the output are defined as OIOI
-1 ˆˆ)ˆˆ(sinˆ SSSSS ××=

Figure 1: Capturing desired motion requirements as a
screw transform

Now that we have a mathematical means to capture the
design specifications as well as the functions (motion
characteristics) of basic building blocks, we can perform
synthesis of mechanisms by selecting and synthesizing
appropriate building blocks.

2.2 Kinematic Building Blocks
There are many ways to categorize a set of building
blocks. Our approach is based on the type of input and
output motions. Since a typical input motion is either a
purely rotational motion (motor or a crank) or a purely
translational motion (pneumatic or hydraulic cylinder), we
identified building blocks as the ones that transform a
Rotational motion(R) into a Translational motion (T) or
between R-R, T-T, or T-R. Figure 2 below shows a partial
list of such building blocks. Although several building
blocks satisfy the basic kinematic function of say
converting R-T, each one has a unique motion
characteristics such as if the output is a reciprocating
motion or if it requires input to change direction to alter

the output direction. These critical differences are captured
in what is called a Motion Characteristics Code (MCC).

A: Rotation-Rotation Building Blocks

B: Rotation – Translation Building Blocks

Figure 2: Library of kinematic building blocks

2.3 Representation of Building Blocks

A mechanism building block transforms a rigid body
motion between input and output terminals and it is
represented as two screws (i) input motion screw, and (ii)
output motion screw. The magnitude of the output motion
MO is a function of input motion MI, therefore

)ˆ(ˆ
IO MfM = . In the case of a rack-and-pinion building

block, the motion of the rack is a function of rotation angle
of the pinion θI (figure 3) and therefore ()IO G0ˆ θε+=M .

The kinematic function and the relative orientation of the
input and output axes of a rack-and-pinion building block
are represented by a pair of screws (input screw and output
screw). The input motion screw is

()































+
















+=

0
0
0

1
0
0

0ˆ
II εεθS ; And the output motion screw

()































+
















+=

D
0
0

0
1
0

G0ˆ
IO εθεS

IL̂

OL̂

D

Figure 3: Rack-and-Pinion Building Block

Additionally, a motion characteristics code is used to
capture information pertaining to motion type, continuity,
and linearity of building blocks. The motion characteristics
code (MCC) has four entries (ABCD) each has a value of 0
or 1: A. Motion type indicates whether the motion is
rotation (0) or translation (1). B. Continuity indicates
whether the motion is a continuous (0) or intermittent (1).
C. Linearity indicates whether the motion is linearly (0) or
non-linearly (1) dependent on time, and 4. Directionality
indicates whether the motion is unidirectional (0) or bi-
directional (reciprocating or oscillating; value 1). For
example, a simple rotating motion of a motor is coded as
0000 which implies rotational, continuous, linear,
unidirectional motion.

The motion characteristics of each building block (applies
also for an entire mechanism) are represented by a string
of two MCCs: the first MCC characterizes the output and
the second one characterizes the input. For example, a
rack and pinion is represented as 0000-1001. This implies
that the output is rotational, continuous, linear and
unidirectional and the input is translational, continuous,
linear, and non-reciprocating. The fact that the input and
output can be interchanged is stored in another field (not
shown here). Thus, a mechanism building block is
represented by a pair of MCCs and it can also be
considered as a one-edge and a two-node graph . The
library of mechanism building blocks are parameterized by
their design variables and function characteristics.

2.4 Functional Synthesis
The desired motion is represented by a pair of MCCs,
“XXXX-YYYY”. We first search the building block
library to select building block(s) with same pair of MCCs
as the desired MCC pair. If the initial search fails to
identify a matching MCC pair, then the required MCC-pair
is decomposed. The process of decomposition of required
function into sub-functions involves matching the required
output MCC, XXXX in figure 4, with building block MCC
pair until at least one building block whose output MCC
matches with XXXX. If this search is successful, we will
have a XXXX-AAAA building block. Subsequent search

attempts to identify at least one building block whose
MCC pair is AAAA-YYYY. The search and
decomposition process are iterated until an ordered set of
building blocks are identified to match XXXX-YYYY.

Figure 4: Decomposition of MCC in search for candidates

If search process fails to identify a desired MCC, then the
search algorithm attempts to identify matches for
individual entries. For instance, if the search process fails
to identify a building block say whose output is 0101, then
it first attempts to find a building block with 0100. If this
goal is met then the algorithm looks for a building block
whose output is 0001 so that these two building blocks can
be combined to produce the desired output 0101. When
two building blocks are combined, the output of the first
building block serves as the input to the second building
block. A truth table (not shown here) serves as a guide to
derive the resulting motion characteristics when any two
building blocks are concatenated.

After selecting appropriate building blocks, the spatial
configuration of the assembly should be determined. Since
all the building blocks are modeled by dual-vectors, a
series of line transformations [Moon and Kota 2002] are
performed to align the output axis of each building block
with the input axis of its succeeding building block.

2.5 Topological Synthesis
The directions of the motions are aligned by mathematical
manipulation of dual-vectors of the building blocks. This
procedure first aligns the axis of output motion of the last
building block to the desired output motion. This process
involves (a) transformation of each building block
coordinate system in to machine (global) coordinate
system and (b) line transformation of each building block
to align the axes. Note that when all the said
transformations are performed on the selected set of
building blocks, the input axis of the first building blocks
may not match the input axis of the desired motion. This
spatial discrepancy can be met by searching the library for
additional building blocks guided by spatial
decomposition.

2.6 Design Example
The objective is to synthesize a mechanism that draws wire
from a spool and cuts the wire to desired length. The two
subtasks (corresponding to each output motion) are (i) wire
feeding and (ii) wire cutting. It is also required that the

mechanism be driven by a single motor and the two
outputs are coordinated according to a prescribed timing
diagram (not shown). A pair of friction rollers is assumed
to serve as end-effectors to feed the wire intermittently to
the cutter. Figure 5 shows a layout of the kinematic and
topological design specifications.

Figure 5: Schematic of synthesis task specifications.

The position and orientations of the input and output
motions are captured in a Global reference frame. The wire
feeding mechanism has a continuous rotational input and
an oscillating output (0110-0000). A Geneva mechanism
(in the library) is considered as one of the candidate
building blocks since it has the same MCC pair. In order to
match the directions and orientations with the axis of the
input motor and the friction rollers, a spur gear pair and a
bevel gear pair are selected. This process is entirely
algorithmic as it involves, matching MCC pairs, deriving
new subtasks by decomposition, identifying spatial
relations (matches and mismatches) using dual vectors and
coordinate transformations. The evolution of one of the
solution mechanis ms is depicted in figure 6.

A similar procedure yields solutions to wire cutting
mechanism. In the final design shown below, a cam-
follower system is used to convert the continuous
rotational motion of the motor to reciprocating
translational motion of the wire cutter.

A.

B.

C.

D.

E.

F.
Figure 6: A-E is a snap shot at the evolution of a concept
solution during synthesis of the wire-cutting mechanism. F
is one of many possible solutions of an automated wire-
cutting and wire-feeding mechanism.

3.0 Computational Synthesis of Reconfigurable
Machine Tools

Using screw representation of motions, [Moon and Kota
2002b] developed an automated synthesis procedure for
designing reconfigurable machine tools. Starting from a set
of machining operations (figure 7), milling, drilling etc, to
be performed on a set of parts, a set of feasible structural
configurations of the machine is determined using graph
theory. The required motions of the cutting tool to generate
prescribed machining features are captured in the form of
dual-vectors. The mo tion characteristics of various
building blocks (figure 8) are also represented as dual-
vectors. Using a precompiled parameterized library of

commercially available machine modules, each
(kinematic) function is then mapped to a feasible set of
modules. Process models are used to establish desired
dynamic stiffness criteria. This provides a set of
kinematically feasible machine tools that provide desired
motions. The structural stiffness of each of these machine
tools is then evaluated. This results in a dynamically-
feasible sub-set of machine tools.

The design procedure consists of three main stages: 1.
Conceptual design, 2. Module selection, and 3. Design
evaluation. The conceptual design stage consists of three
steps: 1. Task clarification; in which the cutter-location
data is transformed into a series of homogeneous
transformation matrices representing desired motion, 2.
Structural configuration; in which graph theory is used to
enumerate alternate machine tool architectures (Figure 9),
and 3. Function mapping: where the kinematic motion
functions are mapped to various elements of the machine
tool structure (nodes in the structural graph). The key
enabler in developing a systematic procedure is the motion
representation scheme.

3.1 Design Representation

The three dimensional motion of any rigid body (cutting
tool, machine components etc.) is represented (screw) as

[](){ }0TACmM SeSePPMMM$
rrr

++=

The first part of the dual vector representation shows the
range of the motion. MM , mM and CM represent

maximum, minimum, and current value of the motion. The
second term PA + εPT() represents the pitch of the

motion. AP and TP represent angular and translational

pitches respectively. If AP is 0 the screw represents the

pure translation and TP is 0 then the screw represents the

pure rotational motion. AP and TP assume values

between 0 and 1. TP is the ratio of translational motion to

rotational motion if AP is non-zero. Finally, S
r

 is the

direction of the motion and 0S
r

 contains the information of

the position of the motion r
v

.

3.2 Module Selection

The kinematic model of the desired machining task (task
matrix T) comprises of a set of motions required to carry
out the prescribed machining operations. These motions
are represented as a series of screws.

0m_nm_2m_1 TTTTT L=

Each Tm_ represents one motion that can be fulfilled by
one or more mechanisms. A complete model of the task
specifications include the spindle motion, the type of
machining process, power requirements and ranges of

various motions. Since the task matrix transforms the
coordinates from work piece to tool, the product of the
matrices of modules should be equal to the task matrix.

TMMMM n321 =L ; where Mi is ith module matrix. i ∈

{1, 2, 3, ..., n}and T is task matrix. M1 is the module
adjacent to the work piece, and has the function of rotation
about Z-axis, as determined during function assignment
procedure. The modeled task is decomposed in to several
sub-functions during function decomposition procedure
and the decomposed functions are assigned to the modules
that have been determined during structure design stage.

Figure 7: Machining task specifications

Figure 8: A parameterized library of building blocks

AB
Slide 0001

CDE
Simple Base

CDEF
Column-Base

Slide-Tilting
0002

G
Tilt 1001

Tilt 0002

Tilt 2002

IJ
Spindle 0001

Angle-Structure 0001

F

HIJ
Spindle 0002

Angle-Structure 0002

F

FG
Slide-Tilting

0001

Slide-Tilting
 0003

G
Tilt 2001

G
Tilt 0001

G

Tilt 1002

Angle-Structure 0001

H

Angle-Structure 0001

H

J
Spindle 0003

AB
Slide 0002

FG

FG

Figure 9: Enumeration of alternate solution paths.

(a)Configuration1 (b) Configuration 2 (c) Configuration 3

Figure 10: Alternate machine configurations generated.

4.0 Computational Synthesis of Compliant Structures.

In this section, we present a paradigm in which topological
solutions are generated by eliminating unwanted structural
elements. The building blocks in this case are all of the
same type (beams). We start out with a network of
hundreds of such highly interconnected beams. If the
design intent is captured properly as a mathematical
objective function, the optimization procedure will
determine which of the beam elements in the initial
network are really needed to meet the desired functional
specifications. The design variable, beam cross section,
approaches zero value for the beams that are not needed.
This method of “synthesis” is not carried out by
composing necessary building blocks in the strict sense of
the term synthesis. But it does generate (or synthesize)
topological arrangements to meet given functional
specifications. We will illustrate this method in the context
of designing compliant mechanisms.

Traditionally, engineered artifacts are designed to be
strong and stiff. Designs in nature, on the other hand, are
strong but not necessarily stiff – they are compliant.
Compliant mechanisms are single -piece flexible structures
that deliver the desired motion by undergoing elastic
deformation as opposed to jointed rigid body motions of
conventional mechanisms [Kota et al 2001]. Compliance
in design leads to joint less, no-assembly, monolithic
mechanical devices and is particularly suited for
applications with small range of motions

The first step in the design of a compliant mechanism is to
establish a kinematically functional design that generates
the desired output motion when subjected to prescribed
input forces. This is called topological synthesis. Once a
feasible topology is established, performance constraints
(permissible stress, energy efficiency etc.) can be imposed
during the following stage in which size and shape
optimization are performed. The key design challenge in
this paradigm is to synthesize an optimum configuration of
structural elements (beams) which is flexible enough not to
minimize the input energy needed to generate desired
motion (deformation) and yet stiff enough to withstand
resistive external loads.

4.1 Topology Synthesis

An objective function is formulated to capture conflicting
design requirements; that is the need for (a) compliance to
undergo desired deformation (kinematic requirement), and
(b) stiffness to resist external loads (structural requirement)
once the mechanism assumes the desired configuration.

In the first part, the “mechanism design”, the kinematic
requirements are met by maximizing the deflection at a
specified point along a specified direction. This is
achieved by applying a fictitious force at the point of
interest, B, along the direction of the desired output
deflection, ∆ (Figure 11). This “dummy load” is denoted
by fB and as shown below for a general design domain
subject to an applied force, fA, at the point A and some
specified boundary conditions. Maximizing the deflection
at the point B in the direction of fB is equivalent to

maximizing the mutual potential energy, vBT K uA, where
uA is the deflection field due to fA, vB is the deflection
field due to fB, and K is the global stiffness matrix.

max (vB
TK uA)

subject to K uA = f A
 K vB = f B

min (uB
T K u B)

subject to K uB = − f B

Part 2. Structure DesignPart 1. Mechanism Design

fixed point

fB = resistance
of workpiece

A

B

fA = applied force

∆

A

B

fB = dummy load

Figure 11: Illustration of synthesis problem formulation.

In the second part, the structural stiffness is maximized.
Here the point A is considered fixed, and the external load
(resistance) is accounted for by applying the force fB at
point B in the opposite direction. Maximizing the stiffness
is equivalent to minimizing the strain energy, uBT K uB,
where uB is the deflection field due to this set of loading,
and K is the global stiffness matrix. The two parts are then
combined into a single problem via multi-criteria
optimization [Kota et al 2001].

Combined Problem

max
mutual energy
strain energy



 


  = max
vB

TK u A
uB

TK u B











subject to K u A = f A

 K vB = f B

 K uB = − f B

 total resource constraint

 lower and upper bounds

4.2 An Array of Beam Elements

In this method, the prescribed design domain (this is the
area within which the mechanism should fit) is first
divided into a number of nodes. Each node is connected to

several other nodes via modular array of beam elements.
This serves as an initial guess. Certain nodes are “fixed” to
imply the points where the mechanism is anchored to the
substrate. The cross sectional area of each beam element
serves as the design variable with specified upper and
lower bounds. The resource constraint provides less
material than the available space. The objective then is to
distribute the material in a way that maximizes the
objective function. During the optimization process, those
beam elements whose cross sectional areas reach the lower
bound are removed (deemed unnecessary) leaving only a
network of beam elements whose area reached the upper
bound. This establishes the topology of the compliant
mechanism.

4.3 Design Example

The compliant gripper synthesis example (figure 12)
illustrates the automated synthesis method. The design
specifications are that the applied force, F, causes the
motion, D, at the indicated location, which will allow the
device to grip an object at that point as shown in Figure
12(a). The design domain shown in Figure 12(a) represents
the upper-half view since this is assumed to be a
symmetric problem without any loss of generality in the
solution procedure. The dashed line represents the desired
space within which the mechanism should fit.

The initial guess is a modular beam structure (Figure
12(b)) with a uniform distribution of cross-sectional areas.
When the algorithm converges, the solution consists of
beam members whose design variable reached (or is close
to) the upper bound. The beam members whose design
variables reached the lower bound constraint are
eliminated. The optimized solution and corresponding
finite ele ment model are shown in Figure 12(c)), where the
un-deformed shape is denoted by the dashed lines and the
deformed shape is denoted by the solid lines. Compliant
grippers based on this design were fabricated in nylon
using a rapid prototyping machine. The methodology
described here applies for three-dimensional problems as
well as design problems with multiple sets of input/output
force/displacements.

5. 0 Conclusions

The methodologies presented in this paper have been
successfully implemented in synthesis programs. In
mechanisms and machine tools domains, the kinematic
functionality can be captured mathematically in the form
of dual vectors and transformation matrices to enable
algorithmic procedures to generate conceptual designs.
Extending the methodology to multiple domains (such as
hydraulics, and control systems) is difficult due to the fact
that the functions in those domains demand a different
representation scheme. If a lower level function that is
common to multiple domains is discovered, the granularity
or semantic size of the building blocks would become

prohibitively small in that combinatorial explosion would
soon occur. If the granularity is too coarse, not only is the
novelty in synthesis is hindered but also, in the case of
more demanding design task specifications, none of the
building block combinations will yield a feasible solution.
However, a hierarchical functional scheme in which the
functional building blocks are kept coarsest in any given
instance, in that the process of function decomposition is
halted soon as a mapping to a physical device is
discovered. By discretizing the design space and the
functional character of the building blocks to a smaller
chunks yield intricate (several components) solutions. Any
of such solutions can be further refined to enable function
sharing and consequent reduction in total number of parts.
Even in the early stages, mapping functions to physical
building blocks require quantitative comparisons to yield
physically meaningful solutions.

 If an initial seed design is available, and if it can be
abstracted in the form of a graph (nodes and edges), graph
enumeration schemes work well in generating all possible
combinations of building blocks which yield feasible
functional solutions. In the absence of such a seed design,
a mathematical framework is required to capture the
design intent (ignoring the performance measures) and the
functionality of building blocks in a unified representation
scheme. Otherwise, a rule-based or a case-based reasoning
scheme can only offer a limited, non-scalable approach
computational synthesis. Finally, regardless of the
ultimate success of a particular computational scheme
employed, the effort alone enhances the synthetic
reasoning of a human designer.

A. B.

C. D.

Figure 12: Compliant design methodology. (a) Define the
design problem and desired forces. (b) Create an initial
guess of what the structure may look like. (c) Obtain the
solution through structure optimization (deformed shape
shown with dashed lines). (d) Fabricate design.

6.0 Acknowledgements

The author gratefully acknowledges the work of several of
his graduate students who worked diligently on a variety of

computational synthesis schemes over the years. This
work was supported through multiple grants and contracts
from National Science Foundation (NSF) – Design
Engineering Program, and Air Force Office of Scientific
Research (AFOSR).

7.0 References

1. Artobolevsky II, 1986, Mechanisms in Modern
Engineering Design, MIR Publishers, Moscow, Volumes1-
2. Ball, S., 1900, “A Treatise on the Theory of Screws”,
Cambridge University Press (Reprinted in 1998).
4. Bottema, O., and Roth, B., 1979, Theoretical
Kinematics, North-Holland Pub. Co., New York
5. Chironis, N., 1978, Mechanism, Linkages and
Mechanical Controls, McGraw Hill, New York

6. Chiou, S. J. and Kota, S., 1999, Automated Conceptual
Design of Mechanisms, Mechanism and Machine Theory,
Vol. 34, No. 3, 467-495

7. Freudenstein, F., and Maki, E.R., 1979, The creation of
mechanisms according to kinematic structure and function,
Environment and Planning, Vol. 6, 375-391

8. Kota, S., and Chiou, S.J., 1992, Conceptual design of
mechanisms based on computational synthesis and
simulation of kinematic building blocks, Journal of
Research in Engineering Design, Vol. 4, 75-87
9. Kota, S., and Lee C-L. 1993, General Framework for
Configuration Design: Part 1- Methodology; Part 2 –
Application to Hydraulic Systems Configuration, Journal
of Engineering Design, Vol. 4, No. 4: 277-303
10. Kota, S., Joo J., Li Z., Rodgers S.M., and Sniegowski,
2001, Design of Compliant Mechanisms: Applications to
MEMS, Analog Integrated Circuits and Signal Processing,
29, 7-15.

11. Molian, S., 1969, Storage and retrieval of descriptions
of mechanisms and mechanical devices according to
kinematic type, Journal of Mechanisms, Vol. 4, 311-323.

12. Moon, Y-M, and Kota S. 2002, Design of
Reconfigurable Machine Tools, Transactions of the ASME
Journal of Manufacturing Science and Engineering, May,
Vol. 124: 480-483.
13. Moon Y-M, and Kota S. 2002, Automated Synthesis of
Mechanisms using Dual-Vector Algebra, Mechanism and
Machine Theory, 37,143-144
14. Murray, R. M., Li, Z. and Sastry, S. S., 1993, “A
Mathematical Introduction to Robotic Manipulator”, CRC
Press
15. Reuleaux, F., 1876, The Kinematics Of Machinery –
Outline Of A Theory Of Machines, Translated by A. B. W.
Kennedy, Macmillan and Co., London.
16. Tsai, L. W., 2000, Mechanism Design: Enumeration of
Kinematic Structures According to Function, CRC Press.

