
Computational Synthesis of Mechanical Systems 
 

Sridhar Kota 
Professor of Mechanical Engineering 

University of Michigan, Ann Arbor, MI 48105-2125 
Email: kota@umich.edu 

 
 
Abstract 
The paper provides a brief outline of methods for 
automated synthesis  of mechanical systems in general, 
with primary focus on application domains involving 
kinematics of mechanical motions. Two application 
domains described in this paper, mechanisms and machine 
tool design, employ methods of selecting and assembling 
appropriate building blocks to satisfy given functional 
(motion) specifications. This is called Synthesis by 
Composition. The functionality of the precompiled 
building blocks as well as the design task specifications are 
captured mathematically in a unified representation 
scheme. Generation of alternate designs is accomplished 
by manipulation of matrices representing functions. The 
paper also presents another method of Synthesis  by 
Elimination to automatically generate topologies of 
flexible structures which satisfy given input/output forces 
and displacements. The methodology presented in this 
paper has been successfully applied to computational 
synthesis of mechanisms, machine tools, compliant 
mechanisms, and differentials. Various applications of 
these methods to automotive, aerospace, and medical and 
MEMS fields will be presented at the symposium. 
 
1.0 Introduction 
A systematic procedure for automated synthesis involves 
(a) proper understanding of task requirements and (b) 
creation of a concept design; which is referred as 
configuration design, or type synthesis (mechanisms), or 
topology synthesis  (structures, machine tools) etc. 
depending on the application domain. This early phase of 
design is still a mixture of art and science. In order to 
develop a more scientific basis for conceptual design 
process, we need a unified mathematical framework that 
captures both the design intent (task requirements) as well 
as the functionality of the basic building blocks of the 
application domain. Such a mathematical framework, 
being limited to a specific application domain, can 
systematically, and therefore computationally, generate 
alternate solutions and rank them according to various 
performance requirements and constraints. The same 
framework can also include information relevant to further 
analysis and evaluation.  
 
Whenever we attempt to develop a systematic procedure, 
let alone an algorithmic one, to “automate” an open-ended 
creative design process, we need to focus on certain 

aspects of the problem first and set aside the others until 
later stages [Kota and Lee 1993]. Assuming we start with a 
“complete” set of design requirements we can sort out the 
desired primary functions, and performance requirements 
or operational constraints . A function describes the 
intended behavior of the artifact to be designed. For 
instance, in a mechanism, the primary function is purely 
kinematic; that is say when the input motor is turned on, 
the output should follow a specified path.  Inertia forces 
due to component masses and the speed of operation affect 
the dynamic behavior, motor size, vibrations, etc.  
Focusing on the essentials, we first develop alternate 
functional (kinematic) solutions to convert the motion of a 
rotating shaft into a desired trajectory. We can then 
evaluate each of the alternatives and rank them in terms of 
their superiority in dynamic performance measures.  
 
The basic premise of this work, like many others reported 
in the literature, is that we begin the synthesis process by 
reasoning with functions before addressing the 
performance requirements and constraints keeping in mind 
that a complete solution must satisfy all the constraints as 
well as the functions before it is deemed  useful.  Alternate 
designs are generated first by considering functions alone. 
This functional synthesis process yields alternate 
configurations, or topologies, or arrangements which 
satisfy the design requirements in a qualitative sense. 
Systematic generation of these conceptual alternatives can 
be performed in at least two ways: (a) Synthesis by 
Composition; in which each of the higher level functions 
are mapped to one of more pre-compiled physical building 
blocks that are stored in the library. We must then keep 
track of the order and spatial orientations of the candidate 
building blocks to create a meaningful assembly. This 
generic method of synthesizing building blocks is similar 
to creative reasoning of a human designer. (b) Synthesis by 
Elimination, on the other hand, is something that is very 
peculiar to comp uters. Here we start with much lower level 
building blocks of the same kind (Lego blocks, or beams, 
or tubes etc.) with a plurality of standardized connections 
among them. If the design intent is captured correctly, an 
optimization algorithm automatically eliminates the 
building blocks that are not needed leaving a feasible 
topology.  Building blocks used in this type of synthesis 
procedure have finer granularity than the ones used in 
synthesis by composition. In order for this approach to 
work without combinatorial explosion, all the building 
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blocks should share  the same functional character (all 
beams – resist bending; or all tubes – resist torsion; or 
Lego blocks of certain geometric shapes).   
 
In the following, we will very briefly describe the two 
approaches to synthesis. Many of the important details and 
illustrations and the related work by other researchers are 
omitted due to space constraints. Interested readers should 
refer to articles cited for detailed and complete 
descriptions.  
 
2.0 Computational Synthesis of Mechanisms  
 
Conceptual design of mechanisms is still a mixture of art 
of science. Many researchers in the past have attempted to 
classify basic elements of mechanisms in order to 
systematize the creative design process [Reuleaux 1876, 
Molian 1969, Chironis 1978, Artobolevski 1986]. A 
detailed account of various approaches to creative design 
of mechanisms can be found in [Chiou and Kota and 
Chiou 1992]. Graph enumeration procedures reported in 
the literature [Freudenstein and Maki 1979, Tsai 2000] are 
based primarily on structural and topological 
considerations and do not reflect the desired behavior; 
where desired behavior is characterized as a set of 
kinematic functions and operational constraints that 
capture the intended motion requirements. 
 
Starting with the intended function and operational 
constraints, the methodology presented by [Chiou and 
Kota 1999] systematically generates alternate mechanism 
concepts. The methodology uses symbolic matrices and 
constraint vectors to represent the functionality of 
mechanism building blocks. When no direct match exists 
between the motion requirements and stored building 
blocks, the matrix representation scheme automatically 
decomposes the given task into sub tasks to facilitate 
search of sub-solutions and performs subsequent synthesis. 
Rather than symbolic matrices, motion transformation 
matrices based on dual vector algebra [Ball 1900, Bottema 
and Roth 1979, Murray et al 1993] was later presented by 
[Moon and Kota 2002]. 
 
The dual-vector representation of a rigid-body motion 
(screw representation) enables us to separate the function 
from the structure. The design synthesis process comprises 
of three stages: 1. Functional synthesis. (2) Topological 
synthesis and (3) Dimensional synthesis. Motion codes 
capture the kinematic motion transformation required to 
accomplish the task as well as kinematic functionality of 
stored building blocks. The necessary coordinate 
transformation and alignments required to assemble 
appropriate building blocks are performed using dual 
vector algebra during topological synthesis. 
Decomposition of a desired task into subtasks, in order to 
meet either kinematic function or spatial constraints, is 

performed by manipulating the dual-vector 
representations.  

2.1 Motion Specifications 
The dual representation of a screw can also be directly 
applied to represent desired motion specifications. Suppose 
we intend to design (or select or assemble) a mechanism 
that transforms a rotational input motion into a 
translational output motion (figure 1), then the motion 
requirements can be represented as: 
 

( )[ ]III LRLS ×++= εεθ 0ˆ
II
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Where the pitch 0I εθ + represents the rotational motion, 

pitch )(0 IθεF+ represents the translational motion.  The 

dual vectors represent the directions (LI and LO) and the 
positions (RI and RO). Therefore the desired kinematic 
function of the mechanism is to transform 0I εθ +  

to )(0 IθεF+ . Further, the spatial orientation of the input 

and the output are defined as OIOI
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Figure 1: Capturing desired motion requirements as a 
screw transform  

Now that we have a mathematical means to capture the 
design specifications as well as the functions (motion 
characteristics) of basic building blocks, we can perform 
synthesis of mechanisms by selecting and synthesizing 
appropriate building blocks.  

2.2 Kinematic Building Blocks  
There are many ways to categorize a set of building 
blocks. Our approach is based on the type of input and 
output motions. Since a typical input motion is either a 
purely rotational motion (motor or a crank) or a purely 
translational motion (pneumatic or hydraulic cylinder), we 
identified building blocks as the ones that transform a 
Rotational motion(R) into a Translational motion (T) or 
between R-R, T-T, or T-R. Figure 2 below shows a partial 
list of such building blocks. Although several building 
blocks satisfy the basic kinematic function of say 
converting R-T, each one has a unique motion 
characteristics such as if the output is a reciprocating 
motion or if it requires input to change direction to alter 



the output direction. These critical differences are captured 
in what is called a Motion Characteristics Code (MCC). 
 

 
A: Rotation-Rotation Building Blocks 

 
B: Rotation – Translation Building Blocks 

Figure 2: Library of kinematic building blocks 

2.3 Representation of Building Blocks 
 
A mechanism building block transforms a rigid body 
motion between input and output terminals and it is 
represented as two screws (i) input motion screw, and  (ii) 
output motion screw. The magnitude of the output motion 
MO is a function of input motion MI, therefore 

)ˆ(ˆ
IO MfM = . In the case of a rack-and-pinion building 

block, the motion of the rack is a function of rotation angle 
of the pinion θI (figure 3) and therefore ( )IO G0ˆ θε+=M .  
 
The kinematic function and the relative orientation of the 
input and output axes of a rack-and-pinion building block 
are represented by a pair of screws (input screw and output 
screw). The input motion screw is  
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Figure 3: Rack-and-Pinion Building Block 

 
Additionally, a motion characteristics code is used to 
capture information pertaining to motion type, continuity, 
and linearity of building blocks. The motion characteristics 
code (MCC) has four entries (ABCD) each has a value of 0 
or 1: A. Motion type indicates whether the motion is 
rotation (0) or translation (1). B. Continuity indicates 
whether the motion is a continuous (0) or intermittent (1). 
C. Linearity indicates whether the motion is linearly (0) or 
non-linearly (1) dependent on time, and 4. Directionality 
indicates whether the motion is unidirectional (0) or bi-
directional (reciprocating or oscillating; value 1). For 
example, a simple rotating motion of a motor is coded as 
0000 which implies rotational, continuous, linear, 
unidirectional motion. 
 
The motion characteristics of each building block (applies 
also for an entire mechanism) are represented by a string 
of two MCCs: the first MCC characterizes the output and 
the second one characterizes the input.  For example, a  
rack and pinion is represented as 0000-1001. This implies 
that the output is rotational, continuous, linear and 
unidirectional and the input is translational, continuous, 
linear, and non-reciprocating. The fact that the input and 
output can be interchanged is stored in another field (not 
shown here).  Thus, a mechanism building block is 
represented by a pair of MCCs and it can also be 
considered as a one-edge and a two-node graph . The 
library of mechanism building blocks are parameterized by 
their design variables and function characteristics.  
 
2.4 Functional Synthesis 
The desired motion is represented by a pair of MCCs, 
“XXXX-YYYY”. We first search the building block 
library to select building block(s) with same pair of MCCs 
as the desired MCC pair.  If the initial search fails to 
identify a matching MCC pair, then the required MCC-pair 
is decomposed. The process of decomposition of required 
function into sub-functions involves matching the required 
output MCC, XXXX in figure 4, with building block MCC 
pair until at least one building block whose output MCC 
matches with XXXX. If this search is successful, we will 
have a XXXX-AAAA building block. Subsequent search 



attempts to identify at least one building block whose 
MCC pair is AAAA-YYYY. The search and 
decomposition process are iterated until an ordered set of 
building blocks are  identified to match XXXX-YYYY. 

 
Figure 4: Decomposition of MCC in search for candidates 
 
If search process fails to identify a desired MCC, then the 
search algorithm attempts to identify matches for 
individual entries. For instance, if the search process fails 
to identify a building block say whose output is 0101, then 
it first attempts to find a building block with 0100. If this 
goal is met then the algorithm looks for a building block 
whose output is 0001 so that these two building blocks can 
be combined to produce the desired output 0101. When 
two building blocks are combined, the output of the first 
building block serves as the input to the second building 
block. A truth table (not shown here) serves as a guide to 
derive the resulting motion characteristics when any two 
building blocks are concatenated.  
  
After selecting appropriate building blocks, the spatial 
configuration of the assembly should be determined. Since 
all the building blocks are modeled by dual-vectors, a 
series of line transformations [Moon and Kota 2002] are 
performed to align the output axis of each building block 
with the input axis of its succeeding building block.  
 
2.5 Topological Synthesis  
The directions of the motions are aligned by mathematical 
manipulation of dual-vectors of the building blocks. This 
procedure first aligns the axis of output motion of the last 
building block to the desired output motion. This process 
involves (a) transformation of each building block 
coordinate system in to machine (global) coordinate 
system and (b) line transformation of each building block 
to align the axes. Note that when all the said 
transformations are performed on the selected set of 
building blocks, the input axis of the first building blocks 
may not match the input axis of the desired motion. This 
spatial discrepancy can be met by searching the library for 
additional building blocks guided by spatial 
decomposition.  
 
2.6 Design Example 
The objective is to synthesize a mechanism that draws wire 
from a spool and cuts the wire to desired length. The two 
subtasks (corresponding to each output motion) are (i) wire 
feeding and (ii) wire cutting. It is also required that the 

mechanism be driven by a single motor and the two 
outputs are coordinated according to a prescribed timing 
diagram (not shown). A pair of friction rollers is assumed 
to serve as end-effectors to feed the wire intermittently to 
the cutter. Figure 5 shows a layout of the kinematic and 
topological design specifications.  

 
Figure 5: Schematic of synthesis task specifications. 

 
The position and orientations of the input and output 
motions are captured in a Global reference frame. The wire 
feeding mechanism has a continuous rotational input and 
an oscillating output (0110-0000). A Geneva mechanism 
(in the library) is considered as one of the candidate 
building blocks since it has the same MCC pair. In order to 
match the directions and orientations with the axis of the 
input motor and the friction rollers, a spur gear pair and a 
bevel gear pair are selected. This process is entirely 
algorithmic as it involves, matching MCC pairs, deriving 
new subtasks by decomposition, identifying spatial 
relations (matches and mismatches) using dual vectors and 
coordinate transformations.  The evolution of one of the 
solution mechanis ms is depicted in figure 6. 
 
A similar procedure yields solutions to wire cutting 
mechanism. In the final design shown below, a cam-
follower system is used to convert the continuous 
rotational motion of the motor to reciprocating 
translational motion of the wire cutter. 

A.  

B.  



C.  

D.  

E.  

F.  
Figure 6: A-E is a snap shot at the evolution of a concept 
solution during synthesis  of the wire-cutting mechanism. F 
is one of many possible solutions of an automated wire-
cutting and wire-feeding mechanism. 
 
3.0 Computational Synthesis of Reconfigurable 
Machine Tools 
 
Using screw representation of motions, [Moon and Kota 
2002b] developed an automated synthesis procedure for 
designing reconfigurable machine tools. Starting from a set 
of machining operations (figure 7), milling, drilling etc, to 
be performed on a set of parts, a set of feasible structural 
configurations of the machine is determined using graph 
theory. The required motions of the cutting tool to generate 
prescribed machining features are captured in the form of 
dual-vectors. The mo tion characteristics of various 
building blocks (figure 8) are also represented as dual-
vectors. Using a precompiled parameterized library of 

commercially available machine modules, each 
(kinematic) function is then mapped to a feasible set of 
modules. Process models are used to establish desired 
dynamic stiffness criteria. This provides a set of 
kinematically feasible machine tools that provide desired 
motions. The structural stiffness of each of these machine 
tools is then evaluated. This results in a dynamically-
feasible sub-set of machine tools.  

The design procedure consists of three main stages: 1. 
Conceptual design, 2. Module selection, and 3. Design 
evaluation. The conceptual design stage consists of three 
steps: 1. Task clarification; in which the cutter-location 
data is transformed into a series of homogeneous 
transformation matrices representing desired motion, 2. 
Structural configuration; in which graph theory is used to 
enumerate alternate machine tool architectures (Figure 9), 
and 3. Function mapping: where the kinematic motion 
functions are mapped to various elements of the machine 
tool structure (nodes in the structural graph). The key 
enabler in developing a systematic procedure is the motion 
representation scheme.  

3.1 Design Representation 

The three dimensional motion of any rigid body (cutting 
tool, machine components etc.) is represented (screw) as  

[ ]( ){ }0TACmM SeSePPMMM$
rrr

++=  

The first part of the dual vector representation shows the 
range of the motion. MM , mM  and CM represent 

maximum, minimum, and current value of the motion. The 
second term PA + εPT( ) represents the pitch of the 

motion. AP and TP represent angular and translational 

pitches respectively. If AP is 0 the screw represents the 

pure translation and TP  is 0 then the screw represents the 

pure rotational motion. AP  and TP  assume values 

between 0 and 1. TP is the ratio of translational motion to 

rotational motion if AP is non-zero. Finally, S
r

 is the 

direction of the motion and 0S
r

 contains the information of 

the position of the motion r
v

. 

3.2 Module Selection 

The kinematic model of the desired machining task (task 
matrix T) comprises of a set of motions required to carry 
out the prescribed machining operations. These motions 
are represented as a series of screws. 

0m_nm_2m_1 TTTTT L=  

Each Tm_ represents one motion that can be fulfilled by 
one or more mechanisms. A complete model of the task 
specifications include the spindle motion, the type of 
machining process,  power requirements and ranges of 



various motions. Since the task matrix transforms the 
coordinates from work piece to tool, the product of the 
matrices of modules should be equal to the task matrix. 

TMMMM n321 =L ; where Mi is ith module matrix. i ∈ 

{1, 2, 3, ..., n}and T is task matrix. M1 is the module 
adjacent to the work piece, and has the function of rotation 
about Z-axis, as determined during function assignment 
procedure. The modeled task is decomposed in to several 
sub-functions during function decomposition procedure 
and the decomposed functions are assigned to the modules 
that have been determined during structure design stage. 

 
Figure 7: Machining task specifications 

 

 
Figure 8: A parameterized library of building blocks  
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Figure 9: Enumeration of alternate solution paths. 

 
 

   
(a)Configuration1 (b) Configuration 2 (c) Configuration 3 

 
Figure 10: Alternate machine configurations generated. 
 
4.0 Computational  Synthesis of Compliant Structures. 

In this section, we present a paradigm in which topological 
solutions are generated by eliminating unwanted structural 
elements. The building blocks in this case are all of the 
same type (beams). We start out with a network of 
hundreds of such highly interconnected beams. If the 
design intent is captured properly as a mathematical 
objective function, the optimization procedure will 
determine which of the beam elements in the initial 
network are really needed to meet the desired functional 
specifications. The design variable, beam cross section, 
approaches zero value for the beams that are not needed. 
This method of “synthesis” is not carried out by 
composing necessary building blocks in the strict sense of 
the term synthesis. But it does generate (or synthesize) 
topological arrangements to meet given functional 
specifications. We will illustrate this method in the context 
of designing compliant mechanisms. 

Traditionally, engineered artifacts are designed to be 
strong and stiff. Designs in nature, on the other hand, are 
strong but not necessarily stiff – they are compliant. 
Compliant mechanisms are single -piece flexible structures 
that deliver the desired motion by undergoing elastic 
deformation as opposed to jointed rigid body motions of 
conventional mechanisms  [Kota et al 2001]. Compliance 
in design leads to joint less, no-assembly, monolithic 
mechanical devices and is particularly suited for 
applications with small range of motions 

The first step in the design of a compliant mechanism is to 
establish a kinematically functional design that generates 
the desired output motion when subjected to prescribed 
input forces. This is called topological synthesis. Once a 
feasible topology is established, performance constraints 
(permissible stress, energy efficiency etc.) can be imposed 
during the following stage in which size and shape 
optimization are performed. The key design challenge in 
this paradigm is to synthesize an optimum configuration of 
structural elements (beams) which is flexible enough not to 
minimize the input energy needed to generate desired 
motion (deformation) and yet stiff enough to withstand 
resistive external loads.  

4.1 Topology Synthesis 



An objective function is formulated to capture conflicting 
design requirements; that is  the need for (a) compliance to 
undergo desired deformation (kinematic requirement), and 
(b) stiffness to resist external loads (structural requirement) 
once the mechanism assumes the desired configuration.  

In the first part, the “mechanism design”, the kinematic 
requirements are met by maximizing the deflection at a 
specified point along a specified direction.  This is 
achieved by applying a fictitious force at the point of 
interest, B, along the direction of the desired output 
deflection, ∆ (Figure 11).  This “dummy load” is denoted 
by fB and as shown below for a general design domain 
subject to an applied force, fA, at the point A and some 
specified boundary conditions.  Maximizing the deflection 
at the point B in the direction of fB is equivalent to 

maximizing the mutual potential energy, vBT K uA, where 
uA is the deflection field due to fA, vB is the deflection 
field due to fB, and K is the global stiffness matrix.  

max (vB
TK uA)

subject to   K uA = f A
                  K vB = f B

min (uB
T K u B)

subject to   K uB = − f B

Part 2.  Structure DesignPart 1.  Mechanism Design

fixed point

fB =  resistance
of workpiece

A

B

fA = applied force

∆

A

B

fB  = dummy load

 
Figure 11: Illustration of synthesis problem formulation. 

In the second part, the structural stiffness is maximized.  
Here the point A is considered fixed, and the external load 
(resistance) is accounted for by applying the force fB at 
point B in the opposite direction.  Maximizing the stiffness 
is equivalent to minimizing the strain energy, uBT K uB, 
where uB is the deflection field due to this set of loading, 
and K is the global stiffness matrix. The two parts are then 
combined into a single problem via multi-criteria 
optimization [Kota et al 2001]. 

Combined Problem

max 
mutual energy
strain energy
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subject to   K u A = f A

                  K vB = f B

                  K uB = − f B

                  total resource constraint

                  lower and upper bounds  

4.2 An Array of Beam Elements 

In this method, the prescribed design domain (this is the 
area within which the mechanism should fit) is first 
divided into a number of nodes. Each node is connected to 

several other nodes via modular array of beam elements. 
This serves as an initial guess. Certain nodes are “fixed” to 
imply the points where the mechanism is anchored to the 
substrate. The cross sectional area of each beam element 
serves as the design variable with specified upper and 
lower bounds. The resource constraint provides less 
material than the available space. The objective then is to 
distribute the material in a way that maximizes the 
objective function. During the optimization process, those 
beam elements whose cross sectional areas reach the lower 
bound are removed (deemed unnecessary) leaving only a 
network of beam elements whose area reached the upper 
bound. This establishes the topology of the compliant 
mechanism. 

4.3 Design Example 

The compliant gripper synthesis example (figure 12) 
illustrates the automated synthesis method. The design 
specifications are that the applied force, F, causes the 
motion, D, at the indicated location, which will allow the 
device to grip an object at that point as shown in Figure 
12(a). The design domain shown in Figure 12(a) represents 
the upper-half view since this is assumed to be a 
symmetric problem without any loss of generality in the 
solution procedure. The dashed line represents the desired 
space within which the mechanism should fit.  

The initial guess is a modular beam structure (Figure 
12(b)) with a uniform distribution of cross-sectional areas.  
When the algorithm converges, the solution consists of 
beam members whose design variable reached (or is close 
to) the upper bound.  The beam members whose design 
variables reached the lower bound constraint are 
eliminated.  The optimized solution and corresponding 
finite ele ment model are shown in Figure 12(c)), where the 
un-deformed shape is denoted by the dashed lines and the 
deformed shape is denoted by the solid lines.  Compliant 
grippers based on this design were fabricated in nylon 
using a rapid prototyping machine. The methodology 
described here applies for three-dimensional problems as 
well as design problems with multiple sets of input/output 
force/displacements. 

5. 0 Conclusions 

The methodologies presented in this paper have been 
successfully implemented in synthesis programs. In 
mechanisms and machine tools domains, the kinematic 
functionality can be captured mathematically in the form 
of dual vectors and transformation matrices to enable 
algorithmic procedures to generate conceptual designs. 
Extending the methodology to multiple domains (such as 
hydraulics, and control systems) is difficult due to the fact 
that the functions in those domains demand a different 
representation scheme.  If a lower level function that is 
common to multiple domains is discovered, the granularity 
or semantic size of the building blocks would become 



prohibitively small in that combinatorial explosion would 
soon occur. If the granularity is too coarse, not only is the 
novelty in synthesis is hindered but also, in the case of 
more demanding design task specifications, none of the 
building block combinations will yield a feasible solution.  
However, a hierarchical functional scheme in which the 
functional building blocks are kept coarsest in any given 
instance, in that the process of function decomposition is 
halted soon as a mapping to a physical device is 
discovered.  By discretizing the design space and the 
functional character of the building blocks to a smaller 
chunks yield intricate (several components) solutions. Any 
of such solutions can be further refined to enable function 
sharing and consequent reduction in total number of parts. 
Even in the early stages, mapping functions to physical 
building blocks require quantitative comparisons to yield 
physically meaningful solutions. 

 If an initial seed design is available, and if it can be 
abstracted in the form of a graph (nodes and edges), graph 
enumeration schemes work well in generating all possible 
combinations of building blocks which yield feasible 
functional solutions.  In the absence of such a seed design, 
a mathematical framework is required to capture the 
design intent (ignoring the performance measures) and the 
functionality of building blocks in a unified representation 
scheme.  Otherwise, a rule-based or a case-based reasoning 
scheme can only offer a limited, non-scalable approach 
computational synthesis.  Finally, regardless of the 
ultimate success of a particular computational scheme 
employed, the effort alone enhances the synthetic 
reasoning of a human designer.  

A.  B.  

C.  D.  

Figure 12:  Compliant design methodology.  (a) Define the 
design problem and desired forces.  (b) Create an initial 
guess of what the structure may look like.  (c) Obtain the 
solution through structure optimization (deformed shape 
shown with dashed lines).  (d) Fabricate design.   
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